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Abstract

We examine the bubble nucleation rate in a first-order phase transition

taking place in a background Jordan-Brans-Dicke cosmology_ We compute

the leading order terms in the nucleation rate when the Jordan-Brans-Dicke

fleld is large (i.e., late times)_ by means of a Weyl rescaling of the fields in

the theory. We findf that despite the fact that the 2ordan-Brans-Dicke field

(hence the effective gravitational constant) hua time dependence in the false

vacuum, at late times the nucleation rate is time independent.
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Interest in theories with variable gravitational constant has been rekindled recently

with the advent of Kaluza-Klein [1] and string theories [2]. Theories from extra dimen-

sions typically have a scalar field, usually called the dilaton, coupled to the R.icci scalar

in a way reminiscent of Jordan-Brans-Dicke (JBD) theories [3]. The JBD theories have

often been used as toy models to gain insight into more complicated theories. One of

the most obvious questions to ask is how these theories differ from standard Einstein

gravity in their cosmological evolution. We expect that the cosmological behaviour of

such theories at early times will in general be quite different from the standard cosmology

[4].

Our main interest here involves the nucleation of bubbles of true vacuum in first-order

phase transitions. Steinhardt and La [5] have recently used a JBD theory coupled to a

scalar field theory admitting a false vacuum to try to save the old inflation model of Guth

[6]. Their model, dubbed eztended inflation, represents an interesting new addition to

the existing panoply of inflationary models [4] (despite the fact that it too may have some

problems [7,8]), since the fine-tuning problems usually found in new inflation models [4,9]

can be eliminated.

In this letter we examine the effects upon the bubble nucleation rate of a time-

dependent background JBD field. Although we only consider JBD theories, our results

can be trivially extended to other models with varying gravitational constants, e.g.,

induced gravity models where the Ginzburg-Landau scalar field plays the role of the

JBD field [10], or Kaluza-Klein and string theory cosmologies where the dilaton field

plays the analogous role [11]. While one would expect that a complete calculation of the

effects of the JBD field and the metric on the nucleation rate would yield a time dependent

nucleation rate (due to the time dependence of the JBD field in the false vacuum), we find

that at late times (or equivalently, for large values of the JBD field), the rate becomes

approximately time independent. Thus, at least in this regime, the calculations of Refs.



[7,8,12,13]are applicable.

Let us start with the action used by Steinhardt and La:

f d_ _ -_R + wg u_' O_Ov_ 1 _,, ]S[g, _,_r] . + o. ov - . (1)

Here _ is the scalar matter field that plays the role of the "infiaton" in extended inflation

models. We assume that cr has a potential V(_r) with a metastable minimum at cr = O'FV

with V(o" - ¢rFV) -- PV ¢ 0, and a true ground state at o" = o'0 with V(cr0) = 0. • is the

JBD field (with dimension mass2), and gu,, is the metric tensor. Any time dependence in

the JBD field will be manifest as a time dependence of the coefficient of R, which serves

as an "effective" gravitational constant: _ = 1/16_'GEFF. The theory is characterized

by a dimensionless parameter w; in the limit w --, oo the theory is identical to general

relativity. Present experimental limits on w require w > 500 [14].

We will be interested in cosmological solutions to the theory where the metric tensor

and the fields depend only upon time, and the line element takes the Robertson-Walker

form ds 2 = dt _ - a2(t)dt 2, where a(t) is the cosmological scale factor and dl 2 is the spatial

dr 2

dl: = 1 - kr'''''_ + r2dO: + r2 sin: Odck2, (2)

metric

where k = 1, O, or --1 for a closed, spatially fiat, or open Universe.

With the assumptions of a Robertson-Walker metric, _ = constant, and _ = _(t),

the field equations become

+ a: 6q' + 6" a q_

+3a = 2p,,
a 3+2w' (z)

where a dot denotes d/dt and pv = -pv - V(_ = O'FV ) is the (constant) vacuum energy.

We will assume that the curvature term in Eq. (3) can be neglected and set k = 0. The



resulting equations have a solution in which the scale factor a(t) increases as a (large)

power of time, and the JBD field also increases with time [15]:

where

+(t)= ,_(o)(_+ Bt);

,_(t)= ,_(o)(i+ Bt)_'+'_ (4)

o,_ - (s+ 2,,,)(5+ 6,,.0/12. (5)

(This is not the most general k - 0 solution, although a large class of solutions approach

this form at large times [7].)

So long as o- = constant, a(t) and q_(t) will increase in time. If there is a metastable

minimum at a" = trpv, eventually bubbles of true vacuum with o" _ #0 will be nucleated.

It is this nucleation rate which we wish to study.

The field theoretic calculation of the decay of the false vacuum in fiat space-time

was essentially solved by Coleman and Callan and Coleman [16]. Incorporation of the

gravitational effects upon the nucleation rate was studied by Coleman and DeLuccia [17].

However, the latter analysis is not directly applicable here because of the nonstandard

gravitational action whose effective coupling constant changes with time. In order to

sidestep these difficulties, let us recast the theory in a form with a time-independent

gravitational coupling constant. To do this, we perform a Weyl rescaling [18] to remove

the coupling of q) to R. In more detail, we define new fields .# and _ by

g_ = _2(=).¢,,,

= _oln[+(3+2,_)/_o'], (6)

where _0_ = (3 + 2w)/167rGN with GN the presently observed value of Newton's constant.



Choosingthe conformal factor _(z) to satisfy £2_ = 1/16_'Glv changes the action to

s[_,_,_] = d**_ 16_c_

1 _v
+exp(-_/_o) _# a..a_, -exp(-2@/_o) V(cr)] . (7)

Thus, we now have a system consisting of standard Einstein gravity (with constant

gravitational constant), a minimally coupled field Ik, and the inflaton field o now coupled

to _,. A similar approach was used by Gross and Perry [19] in their analysis of monopoles

in Kaluza-Klein theories.

How can a theory with a variable G become a theory with a constant G? The simple

answer is that there are two mass scales, a gravitational mass scale and a mass scale in

V(o), but the only relevant observable is the ratio of the two mass scales. In the theory

as written as in Eq. (1), the _ mass is constant in time while the gravitational mass

changes, while in the theory as expressed in Eq. (7), the gravitational mass is constant

but the _r mass varies. Of course, in both pictures the ratio of the gravitational mass to

the o"mass evolves in time in the same way, and one may choose to work with whichever

picture is more convenient.

Again making the assumption that the metric is of the Rohertson-Walker form, o" -

constant, and _ only depends upon time, the equations of motion are

+ _ = s '//' + exp(-2,H¢o)pv
_ 2

_" + 3--_'a = _ooexp(-2$/'d;°)pv' (8)

In Eq. (8) we have denoted the time and scale factor in the rescaled system of Eq. (7) as

f and _(f), respectively, and prime denotes d/df. The k = 0 equations of motion again

have a power law solution:

_(_) = _(o)(t + c_) _/'+'/'

_(f) = _h(O) +!holn(1 + C/'), (9)
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where here,

1 [ 'v ] 1/2C = a'I'(0) 24_-'-a_v = 2116_'GN@(0)] -1/_ B. (10)

At this point we would like to see how the two solutions are related to one another.

We first note that the conformal factor in our Weyl rescaling is given by

aCt ) = [16_aN¢(t)]-I/2= _(I + B0 -I. (11)

Since the two line elements d_ 2 = d_ 2 - _(_)d[ 2 and ds 2 = dt 2 - a_(t)dl 2 are related by

ds/d3 = fl, we must have d[ = dl and

at _(t)
a-?= a(_---_= a(t), (12)

Integrating the dE/dt equation and fixing the constant of integration so that the a(_)/a(t)

equation is satisfied, we obtain

(1 + C_) = (I + Bt) _. (13)

Having completed these preliminaries,let us turn to the the bubble nucleation rate.

First, we note that the conformal relation between the original and the rescaied theories

fixes the relationship between the nucleation rates in the two theories. In the latter

theory the nucleation probability per physical volume per time is

dP(_)
A(t) ----dV(t)dt' (14)

where P(t') is the probability of bubble nucleation and lY(_) is the physical volume

measured in the rescaled system at time _'. The equivalent rate in the original theory is

then

(a(_-)__d__(_)= _-'(t) _(_), (15)tiP(t)

_(t) = d_(t)dt = \ _(t) / -£



where we have used Eqs. (11) and (13) and the fact that P(t) = Pit(t)].

In the JBD theory there are two effects which might cause the bubble nucleation

rate to deviate from its fiat-space value. The first is the gravitational coupling, while

the second is the time dependence of the JBD field. In the rescaled formulation of the

theory the gravitational interaction has the standard form, and so we might expect direct

gravitational effects to be similar to those in a standard theory. In order to isolate any

time dependence coming directly from the JBD field, let us consider the theory of Eq. (7)

in the Glv _ 0 limit. In this limit the first, gravitational, term in the action should

certainly be omitted. What is perhaps less obvious is that the second term, containing

the kinetic energy of the JBD field, should also be neglected. To make this a bit clearer,

consider replacing ¢(z) by ¢(z) - ¢(z)/¢0. The JBD kinetic energy term now has the

f°rm15¢0 _ g*" 8_,¢8,,_. Because ¢0 is proportional to G_v1/_, this term scales in precisely

the same way as the Ricci term as G_, ---* 0.

We are thus left with the last two terms of Eq. (7). Only the matter field _r remains as

a dynamical quantity. Without their time derivative terms, the metric and the JBD field

now enter essentially as nondynamical, externally specified quantities. Since gravitational

effects can only be small if the bubble size is much less than the curvature of space, we

take the metric to be fiat, and write the action of this truncated theory as

where we have defined b - exp(-¢/¢0). We now wish to calculate the nucleation rate

in this truncated theory, or, more precisely, to determine its dependence on the value

of b. With the gravitational interaction no longer present, we can use the methods of

Ref. [16], although with some modifications necessitated by the nonstandard form of the

kinetic energy term. The first step is to find the "bounce" _(z); i.e., the minimum action

solution of the EucLidean equations of motion containing a true vacuum region where
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cr _ o'0 but with ¢r approaching its false vacuum value at infinity. The bubble nucleation

rate per unit volume is then given by _ = A exp(--SE), where SE is the Euclidean action

of the bounce while the prefactor A is given by

(c.)A= det[S ( FV)] 1] (17)
D

Here, the prime denotes that the functional determinant is to be evaluated in the subspace

orthogonal to the four translational zero modes. The Cu are normalization factors for

these zero modes, defined so that the properly normalized modes are C_X/2Ou_ ", /z = 1...4,

so that

- f (18)

with no sum over # implied. (With an O(4)-symmetric bounce, the C_, are all equal and

can be simply related to the bounce action; we will not need to use this fact.)

By a simple rescaling of coordinates, one finds that the bounce solution has the form

o'(z) = _r(v/bz), where _(y)is the bounce solution when b = 1. By substituting this into

the action and then rescaling the integration variable, we see that SE is the same as for

the b = 1 case; all of the b dependence lies in the prefactor. Performing the functional

variation of the Euclidean action gives

det'[S_(@)] 1-,/2 det,_[_bO2_.+_b2V,,(@) ] -,/_

ADET _ dett zt FVSJ I =
(19)

rs,,, _ ,, det[_bcP,+b2V,(¢FV)]

To determine the b dependence of the determinants, we note that if @x(z) is an eigen-

function of the operator -a 2 + Y"(&) with eigenvalue _, then _x(v_z) will be an eigen-

function of the operator -bO 2 + b2V"(_) with eigenvalue bL_; the same relationship holds

for the eigenvalues associated with the false vacuum configuration. Now if we note that

the primed determinant has four fewer eigenvalues than the unprimed one, we see that

ADET contains a factor of [(b2)-4] -_/2 = b4; i.e., ADET ---- b4ADET, where 2_DET is the deter-

minant ratio b = 1. Finally, the b dependence of the C_, can be obtained by substituting
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our bounce solution into Eq. (18) and rescaling the integration variable. The result is

that C'_, = b-lC_,, where ag_n the hat indicates the b = 1 value. The prefactor A thus

has a net factor of b_, so that _(_) - b2_0, where _0 is the nucleation rate for a normal

scalar field theory with potential V(o'). Since b is a function of the time-dependent JBD

field, we thus have a time-dependent nucleation rate in the rescaled theory. However,

this time dependence disappears if we go back to the original theory. Eqs. (6) and (11),

together with the definition of _0, imply that b = CP(t). Using Eq. (15), we find that

the nucleation rate of the original theory is _(t) = _o, and is thus time independent in

the approximation to which we are working. Indeed, this is just the result one would

have obtained by omitting both gravitational and JBD effects from the original action of

Eq. (I).

It may be a bit unsettling that the nucleation rate can be either time dependent or

time independent, depending on the framework in which one chooses to work, but this

is inevitable once we exploit the possibility to make a time-dependent rescaling of space-

time. The ambiguity is eliminated if one asks questions which are phrased entirely in

terms of physical lengths. Thus, if we calculate the probability that a bubble will nucleate

within a space-time volume equal to the fourth power of the o'-Compton wavelength, the

result wiU be the same in either formalism and, in the limit we are working, wiU be

independent of time.

Similarly, we should require that both frameworks give the same answer to the ques-

tion of whether and, if so, when the true vacuum percolates. Some indication of this can

be found by considering the dimensionless parameter • -- _/H4(t) where H(t) = h(t)/a(t)

[7,8,12]. In a de Sitter universe described by general relativity, percolation occurs if this

parameter is larger than a critical value, •ca, lying in the range 1.1 x 10 -s _, eta _< 0.24

[12]; the same is expected to be true in the large-ca limit of JBD theory. To compare our

two theories, we calculate _(E) - _/H(_). Using our formulae above, and making use of
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the relation between t a,nd t, we find that

= +

so that the two theories agree in the limit of large w.

Let us comment on the validity of our approximations. We have worked in the limit

G_r _ 0. Although we have not yet calculated the first order corrections to this limit, we

can use the results of bubble nucleation calculations in standard gravity as a guide. In

those calculations, the terms of order G.,¢ are small provided that the mass scales in the

matter part of the action are much less than the Planck mass, and that the bubble size is

small compared to the curvature of space. By analogy, we expect our approximation to be

reliable when the effective Planck mass induced by the JBD field is much greater than the

mass scales associated with the o" field. Since _ increases with time, our approximation

should be best in the large-t limit.

We should also comment on our assumption that _ could be treated as constant during

the bubble nucleation process. This would imply that q' was also constant. However,

we have explicitly used the fact that both a and _ were time dependent in order to

derive our result for _. The resolution of these seemingly contradictory assumptions is

that the (imaginary-time) bounce configuration used in computing the tunnelling action

is distinct from the (reai-time) backround metric and JBD field configuration governing

the evolution of the Universe. It is this latter configuration that remains time dependent.

A similar situation occurs in old inflation nucleation rate calculations, in which the

metric is frozen out of the bounce solution, yet the real-time Universe is stiU expanding

exponentially.

To conclude, we see that at least at large times, the influence of the time dependence

of the JBD field does not give rise to any time dependence of the nucleation rate. It

would be of great interest to understand how to calculate the full consequences of the



JBD field on this rate. This is being done by us [20], but there are some questions of

principle, such as how to specify boundary conditions for the JBD field in the bounce

configuration. We also note that if one chooses to work in the rescaled system where

gravity is normal, microphysics is abnormal, and one must take care in calculation of

bubble nucleation.

Gravitational effects on vacuum decay in ,]BD theories have also been considered by

Accetta and Romanelli [21].
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